A Class of Completely Monotonic Functions Involving Divided Differences of the Psi and Polygamma Functions and Some Applications

نویسنده

  • FENG QI
چکیده

A class of functions involving the divided differences of the psi function and the polygamma functions and originating from Kershaw’s double inequality are proved to be completely monotonic. As applications of these results, the monotonicity and convexity of a function involving ratio of two gamma functions and originating from establishment of the best upper and lower bounds in Kershaw’s double inequality are derived, two sharp double inequalities involving ratios of double factorials are recovered, the probability integral or error function is estimated, a double inequality for ratio of the volumes of the unit balls in Rn−1 and Rn respectively is deduced, and a symmetrical upper and lower bounds for the gamma function in terms of the psi function is generalized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wendel's and Gautschi's inequalities: Refinements, extensions, and a class of logarithmically completely monotonic functions

In the article, presented are sufficient and necessary conditions for a class of functions involving the ratio of two gamma functions to be logarithmically completely monotonic. From this, some inequalities for bounding the ratio of two gamma functions are refined, extended and sharpened readily, and double inequalities on the divided differences of the psi and polygamma functions are derived s...

متن کامل

Supplements to a class of logarithmically completely monotonic functions associated with the gamma function

In this article, a necessary and sufficient condition and a necessary condition are established for a function involving the gamma function to be logarithmically completely monotonic on (0,∞). As applications of the necessary and sufficient condition, some inequalities for bounding the psi and polygamma functions and the ratio of two gamma functions are derived. This is a continuator of the pap...

متن کامل

Necessary and Sufficient Conditions for a Function Involving Divided Differences of the Di- and Tri-gamma Functions to Be Completely Monotonic

In the present paper, necessary and sufficient conditions are established for a function involving divided differences of the digamma and trigamma functions to be completely monotonic. Consequently, necessary and sufficient conditions are derived for a function involving the ratio of two gamma functions to be logarithmically completely monotonic, and some double inequalities are deduced for bou...

متن کامل

Bounds for the Ratio of Two Gamma Functions—from Gautschi’s and Kershaw’s Inequalities to Completely Monotonic Functions

Abstract. In this expository and survey paper, along one of main lines of bounding the ratio of two gamma functions, we look back and analyse some inequalities, the complete monotonicity of several functions involving ratios of two gamma or q-gamma functions, the logarithmically complete monotonicity of a function involving the ratio of two gamma functions, some new bounds for the ratio of two ...

متن کامل

Some Completely Monotonic Functions Involving the Gamma and Polygamma Functions

In this paper, some logarithmically completely monotonic, strongly completely monotonic and completely monotonic functions related to the gamma, digamma and polygamma functions are established. Several inequalities, whose bounds are best possible, are obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009